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Causal evidence suggests that providing 
teachers formative feedback can improve both 
their instruction (Kraft et al., 2018) and their stu-
dents’ outcomes (Steinberg & Sartain, 2015; 
Taylor & Tyler, 2012). Formative feedback is 
nonevaluative, supportive, timely, and specific, 
with the intention to modify teachers’ thinking or 
behavior to improve their teaching (Shute, 2008). 

Yet, the average teacher in the United States may 
have limited access to such feedback. In many 
schools, the most regular feedback to teachers 
occurs via principals, particularly following 
reforms to U.S. teacher evaluation systems in the 
early 2010s. Teachers often report such feedback 
as having low utility (Hellrung & Hartig, 2013), 
and researchers find mixed evidence regarding 
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the efficacy of evaluative feedback on instruction 
and student outcomes (for a review, see Firestone 
& Donaldson, 2019; Rigby et al., 2017). 
Furthermore, only roughly 40% of schools pro-
vide teachers access to a math or reading coach 
(Taie & Goldring, 2017), and some studies sug-
gest that many coaches spend limited time work-
ing directly with teachers to improve instruction 
(Bean et al., 2010; Gibbons & Cobb, 2016; Scott 
et al., 2012). A major reason is that coaches’ roles 
include a variety of duties, including locating and 
generating curricula for teachers and facilitating 
data collection and grade-level team meetings, 
crowding out time for 1:1 feedback to teachers 
(Bean et al., 2010; Gibbons & Cobb, 2017; Kane 
& Rosenquist, 2019).

High-quality formative feedback can thus be 
effective, but it is likely that few educators expe-
rience such feedback on a regular basis. This sug-
gests the need to improve the availability and 
utility of such feedback. We identify two key 
challenges in accomplishing this goal using the 
current system of human observation and feed-
back. First, generating formative feedback tends 
to be resource-intensive (Kraft & Gilmour, 
2016). Experts in instruction must form relation-
ships with teachers, observe classrooms, prepare 
comments, and meet to review and reflect with 
teachers—limiting the number of teachers an 
individual may serve. Second, the quality of 
feedback varies. Even the most formal classroom 
observation rating systems tend to have low rater 
consistency (Ho & Kane, 2013), and descriptive 
studies find feedback strongly influenced by the 
perspective of the observers (Donaldson & 
Woulfin, 2018). Kraft and Gilmour (2016) also 
found principal feedback associated with a new 
teacher evaluation system prone to upward bias 
(see also Ho & Kane, 2013), perhaps as princi-
pals sought to avoid conflict, further limiting the 
utility of feedback as an improvement mecha-
nism (Kraft & Gilmour, 2016). Although feed-
back quality is best documented in studies of 
teacher evaluation, it is likely that similar vari-
ability in coach feedback exists.

In this study, we address these challenges and 
show that it is possible to provide useful and effec-
tive feedback to teachers via automated tools. 
Leveraging recent advances in natural language 
processing (NLP), we developed M-Powering 
Teachers, a tool to provide automated feedback to 

teachers on their uptake of student contribu-
tions—namely, instances when a teacher 
acknowledges, revoices, and uses students’ ideas 
as resources in their instruction. We focus on 
uptake because it is a fundamental teaching skill 
(Collins, 1982) associated with dialogic instruc-
tion (Nystrand et al., 1997; Wells, 1999), whose 
positive association with student learning and 
achievement has been widely documented across 
learning contexts (Brophy, 1984; Demszky et al., 
2021; Herbel-Eisenmann et al., 2009; Nystrand 
et al., 2000; O’Connor & Michaels, 1993; Wells 
& Arauz, 2006). Improving uptake has proven to 
be among the most difficult teaching practices to 
change (Cohen, 2011; Kraft & Hill, 2020) per-
haps due to its cognitive complexity (Lampert, 
2001). Applying our tool to a practice that has 
been shown difficult to alter can help demonstrate 
its potential to improve instruction through pro-
viding feedback to teachers.

We employed M-Powering Teachers to pro-
vide feedback to 1,136 instructors as part of Code 
in Place, a 5-week, free online computer science 
course organized by Stanford University. This 
course teaches introduction to programming to 
∼12,000 students worldwide, in small sections 
with a 1:10 teacher–student ratio, all but nine of 
which use English as the language of instruction 
(Piech et al., 2021). Three features make Code in 
Place an ideal setting for our study. First, the 
instructors in this course are volunteers and many 
do not have prior experience in teaching. Thus, 
they are likely more responsive to the automated 
feedback we provide than experienced teachers 
who may already know how to uptake student 
ideas. Second, the instruction took place in an 
online video conferencing platform, which facili-
tates the recording of high-quality classroom 
audio compared with an in-person setting. While 
our ultimate goal is to implement our feedback 
tool in in-person classrooms, a virtual context 
like this serves as a useful first step to test out the 
feasibility of our approach. Third, as informal 
teaching settings are now growing at an unprec-
edented speed, partially due to the COVID-19 
pandemic, conducting our study in a virtual con-
text can help contribute to the emerging literature 
on the efficacy of online teaching.

We provided automated, personalized feed-
back on each instructor’s uptake of student con-
tributions at the end of the week following their 
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teaching session (within 2–4 days). To create 
variation on checking the feedback, we randomly 
selected half of the instructors to receive email 
reminders after the weekly feedback was 
released. Our results suggest that the email inter-
vention increases treated instructors’ likelihood 
of checking the feedback (i.e., opening the feed-
back web page) at least once four times and 
improves their uptake of student contributions by 
7% each week compared with the control group. 
Treatment-on-the-treated (TOT) analysis shows 
much larger effects—checking the automated 
feedback results in a 13% average increase in 
instructors’ uptake of student contributions. We 
also find that this improvement in uptake is not 
driven by instructors’ simple repetition of student 
contributions but instead by more sophisticated 
instructional strategies such as follow-up ques-
tioning. Heterogeneity analysis shows that 
female, returning instructors, and instructors who 
are not in the United States respond more strongly 
to the feedback than their counterparts. We also 
find suggestive evidence that instructors’ check-
ing the feedback improves students’ assignment 
completion and satisfaction with the course.

Measuring Teachers’ Uptake of Student 
Contributions

When teachers take up student contributions 
by, for example, revoicing them, elaborating on 
them, or asking a follow-up question, they 
amplify student voices and give students agency 
in the learning process. Given its documented 
positive association with student learning and 
achievement (Brophy, 1984; Demszky et al., 
2021; Herbel-Eisenmann et al., 2009; Nystrand 
et al., 2000; O’Connor & Michaels, 1993; Wells 
& Arauz, 2006), many scholars consider uptake a 
core teaching strategy and an important part of 
classroom observation instruments. Uptake is 
associated with various discourse strategies 
(Clark & Schaefer, 1989). In education, espe-
cially effective uptake strategies include cases 
when a teacher follows up on a students’ contri-
bution via a question or elaboration (Collins, 
1982; Nystrand et al., 1997). Repetition is con-
sidered to be a less sophisticated uptake strategy 
in education, but can still serve as a way for 
teachers to demonstrate that they are listening to 
students (Tannen, 1987).

The most widely used classroom observation 
instruments in the United States such as the 
Framework for Teaching (Danielson, 2007) and 
CLASS (Pianta et al., 2008) include items that 
measure uptake. These items, along with many 
others that capture similarly complex teaching 
strategies, are coded manually by experts through 
a cognitively demanding and labor-intensive pro-
cess. Wells and Arauz (2006) developed an even 
more fine-grained hierarchical coding scheme 
for manually evaluating uptake. Although their 
scheme allows for the measurement of sophisti-
cated uptake patterns, including various subcate-
gories such as follow-up questions and rejection/
acceptance of student contributions, it has as 
many as 230 code combinations, which makes its 
use too resource-intensive to scale.

Recent efforts to measure uptake at scale have 
sought to generate scores for this construct auto-
matically using NLP methods. Samei et al. 
(2014) and Jensen et al. (2020) use automated 
classification to detect uptake in elementary 
English language arts (ELA) and math class-
rooms. Their approach involved hiring experts to 
manually code several thousand teacher utter-
ances for uptake, training a machine learning 
classifier on the annotated utterances, and then 
applying this classifier to detect uptake in new 
teacher utterances. Although this approach shows 
promise, the relationship of their measure to edu-
cational outcomes is yet to be explored.

In this work, we use a fully automated mea-
sure to identify uptake, one which has been vali-
dated using educational outcomes across domains 
(Demszky et al., 2021). This measure, described 
in greater technical detail in the section “Step 3: 
Transcript Analysis,” also uses machine learning, 
but it does not require manual annotation because 
it learns to identify uptake based on turn-taking 
patterns. The uptake measure captures the extent 
to which a teacher’s response is specific to the 
student’s contribution; that connection serves as 
evidence that the teacher understands and is 
building on the student’s idea (Clark & Schaefer, 
1989). Demszky et al. (2021) find that this mea-
sure captures a wide range of uptake strategies, 
including revoicing, question answering, and 
elaboration, and that it correlates strongly with 
expert annotations for uptake (Spearman’s ρ = 
.54, p < .001). The authors also conducted a 
cross-domain validation and found that their 
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measure correlates positively with instructional 
quality and student satisfaction across three dif-
ferent contexts of student–teacher interaction, 
including elementary math classrooms, small 
group ELA virtual classrooms, and a text-based 
math and science tutoring setting.

Providing Automated Feedback to Teachers

Recent technological advances are giving 
momentum to a growing number of efforts to 
build automated feedback tools for educators. 
Such tools can provide teachers with objective 
insights on their practice in a scalable and consis-
tent way and thereby offer complementary 
advantages to expert feedback, which is chal-
lenging to scale due to resource constraints and 
teachers’ buy-in to inherently subjective infor-
mation on their teaching (Kraft et al., 2018).

The majority of automated tools provide 
teachers with analytics on student engagement 
and progress and allow teachers to monitor stu-
dent learning and intervene when needed (Alrajhi 
et al., 2021; Aslan et al., 2019, among others). 
Few tools provide teachers with feedback that can 
serve as a vehicle for self-reflection and instruc-
tional improvement. To help address this gap, 
researchers have developed measures to detect 
teacher talk moves linked to dialogic instruction, 
a pedagogical approach that involves students in a 
collaborative construction of meaning and is 
characterized by shared control over the key 
aspects of classroom discourse (Donnelly et al., 
2017; Jensen et al., 2020; Kelly et al., 2018; 
Samei et al., 2014). For example, Kelly et al. 
(2018) propose an NLP measure trained on 
human-coded transcripts of live classroom audio 
to identify the number of authentic questions a 
teacher asks in her classroom. Moving beyond 
measurement to teacher feedback, Suresh et al. 
(2021) introduce the TalkMoves application that 
provides teachers with information on the extent 
to which they use dialogic talk moves, including 
pressing for accuracy and revoicing student ideas. 
However, their pilot study did not show a statisti-
cally significant impact of using TalkMoves on 
later teacher practice (Jacobs et al., 2022).

Our Contributions

Building on the aforementioned literature, our 
work makes two key contributions. First, we are 

among the first to evaluate the impact of auto-
mated feedback on teacher instruction through a 
large-scale randomized controlled trial. Our 
study took place in an online, informal teaching 
setting, and it provides evidence that automated 
feedback can improve instructors’ uptake of stu-
dent ideas—a high-leverage teaching practice that 
thus far has proven difficult to change. We believe 
that this study opens up a new strand of inquiry 
that examines how to best leverage cutting-edge 
NLP techniques for enhanced instruction and stu-
dent learning, and lays the foundation for experi-
menting with this approach in new learning 
contexts, such as in-person K–12 classrooms.

Second, M-Powering Teachers is reproducible 
and scalable because it primarily uses open-
source software. In an online setting, our tool 
requires minimal resources because it uses a low-
cost automated speech recognition (ASR) service 
and a fully automated measure for uptake. Our 
user interface, developed in consultation with 
experts in human–computer interaction and edu-
cational interventions as well as teachers them-
selves, is intuitive to use and is nonevaluative. 
We share the details on the tool and the decisions 
we made so that researchers and practitioners can 
readily reproduce, build on, and integrate it into 
their own educational platforms.

Finally, the specific context of an online, vol-
untary computer science course closely mimics 
many emerging teaching settings such as virtual 
tutoring1 where instructors tend to be less trained. 
As a proof of concept, our study demonstrates the 
potential of using automated feedback to improve 
teaching practices in virtual classrooms. It also 
creates avenues for future research to adapt 
M-Powering Teachers to a wider range of teach-
ing contexts and integrate it into a scalable pro-
fessional development framework for teachers.

Background

We ran the study as part of Code in Place, a 
5-week-long, large-scale, free online introductory 
programming course organized by Stanford 
University (Piech et al., 2021). The mission of the 
course is to democratize access to teaching and 
learning how to code. The course was taught for 
the first time in Spring 2020 as a response to the 
COVID pandemic; due to its popularity, it was 
offered again in Spring 2021, which was when we 
conducted the experiment. Instruction primarily 
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took place in OhYay, an online video calling plat-
form. Each week, instructors were provided with 
a link for their own virtual OhYay room for meet-
ings with their students, which occurred between 
Wednesday and Friday of each week. Instructors 
also had the option to use a different platform 
(e.g., Zoom). The course materials were prepared 
in advance by the course organizers and thus are 
uniform across different instructors.

The 2021 course recruited 1,136 volunteer 
instructors from across the globe. Instructors 
applied for the position by submitting both a pro-
gramming exercise and a 5-minute video of 
themselves teaching. Each accepted instructor 
was assigned to teach a section with 10 students. 
The sections met weekly for an hour to discuss 
key topics in the course. We exclude instructors 
who did not use English in their instruction, 
instructors who did not use OhYay and who thus 
did not receive our automated feedback, and 
those who failed to teach their assigned section, 
resulting in a total of 918 instructors and 10,794 
students. Table 1 shows the basic demographics 
of our analytic sample.

Instructors

Based on the limited demographic information 
Code in Place has collected, the instructors are 
diverse in terms of gender, age, and their location 
while teaching the course. In all, 65% of our 
instructor sample described themselves as male, 
32% as female, and 1% as nonbinary. Instructors 
ranged in age from 18 to 81 years, with an aver-
age of roughly 30 years old. They were located in 
82 unique countries with the majority (63%) 
being in the United States; 79% were first-time 
instructors for Code in Place 2021. Based on their 
open-ended responses about their background, 
the majority of instructors were young profes-
sionals working in the technology industry with 
limited teaching experience. The rest of the 
instructors included college students, researchers, 
and former K–12 teachers. The top three motiva-
tions for volunteering were to give back through 
community service, to improve their teaching 
ability, and a love for teaching programming.

Student Demographics and Assessment

The course enrolled 12,210 students and col-
lected gender, age, and location information from 

them at the time of application; 37% of the stu-
dents were female and the majority were under 
the age of 30 (70%).2 Students were located in 
164 unique self-reported countries, with those in 
India (32%) and the United States (30%) account-
ing for more than 60% of the student body.3

TABLE 1

Descriptive Statistics of Analytic Sample

Variable M SD

A. Instructor characteristics
 Female 0.318  
 Age 29.665 11.252
 First-time instructor 0.788  
 In Africa 0.015  
 In Asia 0.159  
 In Australia 0.017  
 In Europe 0.111  
 In North America 0.644  
 In South America 0.011  
 No. of unique instructors 918  
B. Student characteristics
 Female 0.371  
 Age
  18–21 0.305  
  22–25 0.212  
  26–30 0.18  
  31–35 0.127  
  36–40 0.067  
  40+ 0.108  
 In Africa 0.04  
 In Asia 0.446  
 In Australia 0.012  
 In Europe 0.127  
 In North America 0.347  
 In South America 0.025  
 No. of unique students 10,794  
C. Student outcomes
 % of Assignment 1 completed 0.715 0.419
 % of Assignment 2 completed 0.544 0.486
 % of Assignment 3 completed 0.338 0.467
 Class sections attended 1.653 0.823

Note. Code in Place in spring 2021. First-time instructor indi-
cates instructors who taught the first time in Code in Place. 
Students were asked to choose their age ranges so we do not 
have their exact ages. Assignment 3 has two versions, one 
with images and another accessible assignment for visually 
impaired students. If a student worked on both versions, we 
use the version a student made more progress on. We only 
have student attendance information for sections that were 
conducted in OhYay.
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This course did not administer an end-of-
course test to assess student learning, but students 
did have three optional assignments that were 
autograded. The first assignment was released on 
the day of the first section (Wednesday of Week 
1) and due a week later. The second assignment 
was released immediately after the due date of the 
first assignment and due on the Monday of Week 
3. The third assignment was released immediately 
after the due date of the second assignment and 
due on the Friday of Week 5.

Online Setup and Recording

All instructors consented to being recorded 
when choosing to use OhYay at the time they 
signed up for the course. Code in Place automati-
cally recorded each section in OhYay. For sec-
tions that were offered in a different platform, 
Code in Place does not have access to the record-
ings. We thus conduct our study only on sections 
recorded via OhYay.

The M-Powering Teachers Tool

Workflow for Generating Feedback

Our workflow for generating feedback for 
instructors is fully automated; it does not require 
human intervention at any step. Below, we 
explain the details of each step.

Step 1: Recording. OhYay recorded each class 
section automatically. We focus on measuring 
teaching practices in whole class interaction, as it 
is our primary research interest. Also, in practice, 
teachers spent on average only 1% of class time 
in breakout rooms, likely due to the small class 
size.

Step 2: Transcription and Anonymization. We 
transcribed and algorithmically anonymized 
recordings using Assembly.ai, a service we chose 
because of its accuracy, cost-effectiveness (us$1 
per 1 hour of audio) and ease of use. We sepa-
rated speakers (also referred to as diarization) by 
aligning speaker timestamps obtained from 
OhYay with word-level timestamps obtained 
from Assembly.ai. To make sure our transcripts 
do not contain any sensitive data, we anonymized 
transcripts automatically via Assembly.ai by 
redacting all words that could potentially refer to 

people, organizations, locations, phone numbers, 
or credit card numbers. We also replaced all 
speaker IDs with identifiers such as “Teacher,” 
“Student 1,” “Student 2,” and so on. One impor-
tant limitation of this step is that ASR is known 
to be less accurate for speakers whose native lan-
guage is not Standard American English (Koe-
necke et al., 2020), and we do find disparate 
accuracies in our data as well. However, we have 
found evidence that the tool does not affect 
instructors outside the United States more nega-
tively—see Supplementary Appendix A in the 
online version of the journal for details. Before 
scaling up the use of our tool, it is our highest 
priority to evaluate and address speech recogni-
tion issues by leveraging technological improve-
ments in this area.

Step 3: Transcript Analysis. We algorithmically 
analyzed the transcripts to identify various dis-
course-related phenomena. The core measure of 
the feedback is teachers’ uptake of student con-
tributions. We identified teacher uptake using the 
automated measure described in Demszky et al. 
(2021). This measure is a machine learning 
model that is trained on a combination of three 
large corpora of interactions: (a) the National 
Center for Teacher Effectiveness (NCTE) tran-
script dataset of elementary math classrooms 
(Demszky & Hill, 2022), (b) the Switchboard 
dataset of phone conversations, widely used in 
NLP research on dialog (Godfrey et al., 1992), 
and (c) a one-on-one math and science text-based 
tutoring dataset from a company. The model is 
unsupervised: Instead of learning from human 
coding, it learns to distinguish actual student–
teacher adjacency pairs (e.g., S: “I added 30 to 
70.” T: “Where did the 70 come from?”), from 
randomly paired student–teacher utterance pairs 
(e.g., S: “I added 30 to 70.” T: “Please turn to 
your partner”). Using this simple training objec-
tive, the model learns to estimate the extent to 
which a teacher’s response is specific to a stu-
dents’ contribution.

At inference time, the model scores new stu-
dent–teacher utterance pairs between 0 and 1, 
which can be interpreted as the probability of the 
teacher utterance being a response to the given 
student utterance. This probability score is used 
as an estimate for uptake. For example, if a stu-
dent says “I added 30 to 70,” “Okay,” as a 
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teacher’s response would score low on uptake, as 
it can be a response to many student utterances, 
and “Where did the 70 come from?” would score 
high on uptake, as it is specific to the student’s 
contribution. The measure is applicable exclu-
sively to utterance pairs where the student utter-
ance is at least five words long. This is because 
uptake hinges on the previous contribution to be 
substantive enough so it can be taken up. We 
considered a predicted score greater than 0.8 as 
an example of uptake, a threshold we set as (a) it 
is close to the center of the binomial distribution 
of the predictions (in other words, it separates the 
high- vs. low-uptake examples) and (b) it yielded 
a precision on par with human agreement (0.62, 
based on the annotated dataset of Demszky et al., 
2021). As mentioned in the introduction, the 
measure captures multiple uptake strategies, 
including repetition, elaboration, and follow-up 
questions, and has been extensively validated 
using data from a range of instructional settings, 
and proved to have meaningful correlations with 
student learning outcomes.

We used three additional automated discourse 
measures to enrich our understanding of changes 
in instruction relevant to uptake. Given that 
uptake hinges on students contributing to the 
classroom discourse, we quantified teacher talk 
time using timestamps from the transcript. We 
also detected teacher questions by relying on 
question marks and a classifier that we trained to 
identify questions in the absence of question 
marks. The question detector can help us identify 
follow-up questions, which tend to be the best 
examples of uptake, as they both build on and 
probe students’ ideas. We also captured the extent 
to which the teacher repeats student words using 
Demszky et al.’s (2021) method who found rep-
etition to be a core component of uptake. The 
repetition measure computes the percentage of 
student words that are repeated by the teacher in 
their subsequent utterance, ignoring stopwords 
and punctuation. Supplementary Appendix B in 
the online version of the journal provides more 
details on these measures and their correlation 
with the uptake measure.

Step 4: Generating the Feedback. We display 
feedback to teachers on a web application, show-
ing them statistics on their uptake, examples of 
strong uptake from their transcript, and tips for 

improvement. We also invite teachers to reflect 
on their instruction and plan for the next lesson. 
We introduce the design principles and features 
of the feedback below.

Design Principles for the Automated Feedback

Our primary objective is to encourage teach-
ers to reflect on their practice, and thereby 
improve their uptake of student contributions 
during class sessions. To this end, we designed 
M-Powering Teachers with several principles in 
mind and drew on insights from experts and rel-
evant literature in education, social psychology, 
and human–computer interaction.

We provided nonjudgmental information 
about teachers’ instruction in a way that respects 
their agency and authority over their practice 
(Oolbekkink-Marchand et al., 2017; Priestley 
et al., 2015; Wills & Haymore Sandholtz, 2009). 
Specifically, we conveyed the feedback privately 
to each teacher, and explicitly stated that the 
feedback is not used to evaluate them, but rather 
to support their professional development. We 
also included open-ended reflection questions to 
elicit teachers’ own interpretation of the statistics 
and examples and to encourage them to give 
advice to themselves, following the “saying is 
believing” principle (Higgins & Rholes, 1978) 
widely recognized in social psychology.

Second, we took several steps to make the 
feedback concise, specific, and actionable. With 
only one page of information, we used figures to 
visualize high-level statistics on their frequency 
of taking up student ideas and on student talk 
time. To substantiate these statistics and encour-
age teachers to reflect on their instruction, we 
highlighted examples of uptake from their tran-
script and asked teachers to reflect on the strate-
gies they used in these examples. To help teachers 
see how their practice evolves over time and set 
goals for themselves, we included tabs that 
allowed them to revisit their feedback from ear-
lier class sessions. We also provided advice on 
and examples of uptake as well as links to further 
resources including papers and blog posts on 
uptake and dialogic instruction.

Finally and most importantly, we delivered 
the feedback in a timely and regular manner. To 
ensure that teachers still had a fresh memory of 
what they did and to make the feedback more 
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relevant and exciting (Shute, 2008), we shared 
feedback with teachers within 2 to 4 days after 
their class sessions and always before their next 
class. We delivered feedback to teachers after 
each recorded class, with hopes that sustained 
work in this area would lead to improved practice 
over time.

User Interface of the Feedback Application

Figures 1 and 2 show the components of the 
one-page feedback application. On the top of the 
page, a brief paragraph introduces the feedback 
to users, emphasizing that the feedback is private 
and the goal of it is to support the user’s profes-
sional development. Then, users can see statistics 
about talk time, and examples from their tran-
script when their questions elicited a long student 
utterance. Below that, users can see the number 
of uptakes (i.e., examples when they built on stu-
dent contributions) and examples from their tran-
script identified by our algorithm. As we noticed 
that the best examples of uptake occur in the con-
text of a teacher asking a follow-up question, we 
show and count teachers’ uptake examples that 
co-occur with the teacher asking a question. We 
also provide an input box for users to reflect on 
these examples and plan for the next session. At 
the bottom of the page, we share resources, 
including blog posts and papers on dialogic 
instructional practices. Finally, we provide the 
entire transcript to users for review.

Randomized Controlled Trial

We conducted a randomized controlled trial to 
evaluate the effectiveness of the M-Powering 
Teachers tool. The key idea of our study design is 
to generate an exogenous variation of checking 
the feedback, by sending email reminders to a 
random group of instructors. For ethical reasons, 
we offered all instructors access to the feedback 
through a link on the course website. However, 
the link to the feedback was in an inconspicuous 
place, listed among many other teaching-related 
resources, and hence we expected most instruc-
tors would not check the feedback unless they 
received our email reminder.4

Before the start of the course, we randomly 
assigned half of the instructors to treatment (n = 
568) and the other half to control (n = 568) 

groups. We sent instructors in the treatment 
group a weekly email reminder about the feed-
back, resulting in a total of five reminders. The 
instructors in the control group did not receive 
such emails. To ensure that the intervention effect 
is mediated by the content of the automated feed-
back rather than the content of the email, we 
made the email short and generic (Figure 3), with 
only a link to the feedback and two nonpersonal-
ized sentences encouraging instructors to follow 
the link. Our system logged whether an instructor 
opened the feedback page in their browser, which 
we used as a binary variable to measure whether 
the teacher checked the feedback.

Figure 4 shows the timeline of the interven-
tion in relation to the course sections and the 
three assignments administered in the course. 
Sections took place between Monday and 
Wednesday of each week, and we sent the email 
reminders on the Sunday of each week.

Measures of Outcomes

Teaching Practices. As discussed above, we use 
the transcripts that are generated automatically 
based on section recordings from OhYay to mea-
sure and track instructors’ uptake of student con-
tributions.5 We conduct a descriptive analysis to 
show the predictors and the variance components 
of uptake using pre-intervention data and data 
from the control group—see Supplementary 
Appendix C in the online version of the journal 
for details.

Besides uptake, we also track other discourse 
features correlated with uptake, including the 
number of questions asked by an instructor, the 
number of times an instructor repeats students’ 
utterances, and instructors’ talk time. We use 
these three measures as additional outcome vari-
ables to provide some evidence on what instruc-
tional strategies drive the changes we see in 
instructors’ use of uptake. See section “Step 3: 
Transcript Analysis” for details on how we mea-
sure them.

Assignment Completion. We use the percentage 
of questions completed in each assignment as our 
key outcome metric. We only use data from 
Assignments 2 and 3 because the first assign-
ment was due between the first and the second 
class section, which means that our feedback to 
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FIGURE 1. Components of the M-Powering Teachers web application (Part 1).
Note. AI = artificial intelligence.
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FIGURE 2. Components of the M-Powering Teachers web application (Part 2).
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instructors could not have yet affected the com-
pletion rate of the first assignment. The choice of 
outcome metric (whether the assignment was 
attempted, whether the assignment was fully 
completed, etc.) does not significantly affect the 
results. Based on this metric, the average com-
pletion rates are 54% for Assignment 2 (SD = 
48%) and 34% for Assignment 3 (SD = 47%). 
The relatively low completion rates are likely 
explained by the fact that this is a free online 
course, and the assignments are optional.

Endline Survey to Instructors and Students. We 
incentivized a randomly selected group of 200 
instructors to fill out a short survey about the 
feedback tool. The survey asked instructors to 
report their perception of the tool, the effects this 
tool had on their teaching, and suggestions for 
improving the tool. We include the survey in Sup-
plementary Appendix D in the online version of 
the journal. Instructors were sampled irrespective 
of treatment status, received up to three remind-
ers, and were incentivized with a chance to win  
1 of 10 US$40 Amazon gift cards. The survey 
achieved a 71% response rate (n = 142), which 
does not differ by treatment group (p = .303).

Code in Place also administered a short sur-
vey to all students (16% response rate, n = 
1,958). The survey asked students to indicate 
how likely they are to recommend the course to 
friends and how helpful different elements of the 
course were, including sections, assignments, 
course forum, and so on. The lack of reminders 
and incentive explains the low response rate for 
the student survey. We include the survey in 
Supplementary Appendix E in the online version 
of the journal. We constructed two measures 
from the survey as outcomes for our analyses: a 
binary indicator on whether a student responded 
to the survey and students’ raw ratings of their 

likelihood to recommend the course to others on 
a 1 to 10 scale.6 All survey data were deidentified 
before analysis and linked through anonymous 
research IDs.

Validating Randomization

To verify whether our randomization was suc-
cessful, we evaluate whether the demographics 
of instructors in the treatment and control groups 
differ statistically. We also compare instructors’ 
discourse features measured in their first class 
session, prior to receiving feedback. As Table 2 
shows, other than average instructor age, we do 
not find statistically significant differences 
between conditions in any of the instructor demo-
graphics and discourse features of the first sec-
tion. The joint significance test that considers all 
these baseline variables shows a F statistic of 
0.81, failing to reject balance between the two 
conditions. This analysis validates our random-
ization and suggests that any differences we 
observe later in the course are likely due to the 
effects of the intervention.

We also conduct an attrition analysis to exam-
ine whether instructors exhibited differential 
attrition patterns between the two study arms. 
Attrition can be caused by multiple factors—
instructors might be using a different platform 
instead of OhYay (e.g., Zoom) or dropped out of 
the course; we do not have information to iden-
tify the cause behind a missing recording.7 To 
formalize the attrition analysis, we regress a 
binary variable that indicates whether we are 
able to observe an instructor teaching in a par-
ticular week on the treatment status and con-
trol for instructor characteristics. Results in 
Supplementary Appendix F Table A2 in the 
online version of the journal suggest that other 
than a marginally significant coefficient on the 
treatment status in Week 2, there is no evidence 
that instructors attrited differently in the treat-
ment and control groups across the span of the 
course.

Empirical Strategy

We use the exogenous variation generated 
from our randomized email intervention to esti-
mate the impact of checking the NLP-based 
automated feedback on teaching practices and 
student outcomes. As the feedback is provided on 

FIGURE 3. Generic email encouraging instructors 
to check the feedback.
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a weekly basis and the course is 5 weeks long, we 
can observe how teaching practices evolve from 
Week 2 to Week 5. However, given that the ran-
domization was conducted at the individual level 
rather than at the individual-by-week level, 
whether an instructor changed their behavior in a 
given week may be affected by random assign-
ment not only through whether they checked the 
feedback in that week but also through whether 
they checked the feedback in prior weeks. Thus, to 
account for the longitudinal nature of our experi-
ment, we define our primary independent variable 
of interest as checking the NLP-based feedback at 
least once prior to the instructor’s subsequent  

section. Specifically, we estimate the following 
two-stage least squares (2SLS) estimator:

 Feedback T Xit i i it= + + +0 1 2  ,  (1)

 Y Feedback Xit it i it= + + +β β β0 1 2 ,  (2)

where i indicates instructors and t indicates an 
instructional week, which takes the value of 2, 3, 
4, and 5. In Equation 1, we model whether instruc-
tor i opened the feedback page prior to their sub-
sequent section at least once up to a given week t 
as a function of the treatment status (T

i
) and a 

series of time-invariant covariates (X
i
). These 

π π π

µ

FIGURE 4. Timeline of the study.
Note. AI = artificial intelligence.

TABLE 2

Randomization Check

Variable Control M Treatment M p value n

Female 0.33 0.31 .52 918
Age 28.88 30.41 .04 917
First-time Code in Place instructor 0.8 0.78 .41 918
In Africa 0.02 0.02 .87 918
In Asia 0.16 0.18 .37 918
In Australia 0.01 0.02 .36 918
In Europe 0.12 0.11 .44 918
In North America 0.68 0.66 .54 918
In South America 0.01 0.01 .82 918
Offered Week 1 section 0.96 0.96 .63 918
Number of uptakes per hour (Week 1) 11.28 10.94 .41 880
Number of questions per hour (Week 1) 32.73 32.28 .66 880
Number of repetitions per hour (Week 1) 34.54 34.23 .77 880
Teacher talk time proportion (Week 1) 0.76 0.76 .96 880

Note. Joint F statistic is 0.81. First-time instructor indicates instructors who taught the first time in Code in Place. As this course 
is voluntary, 38 instructors did not show up in the first section (post randomization), and we thus exclude them from our analysis. 
We also do not have their Week 1 discourse features.
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covariates include instructor demographics 
(female, age, age2, in the United States, first-time 
Code in Place instructor), pre-intervention dis-
course features (number of uptakes per hour, 
number of questions per hour, number of repeti-
tions per hour, teacher talk time proportion), and 
classroom demographics (proportion of female 
students, proportion of students in the United 
States, proportion of students in each age group 
listed in Table 1). We then use the predicted value 
for checking the feedback at least once up to week 
t as the independent variable in the second stage 
and estimate Equation 2. β

1
 is our parameter of 

interest that captures the local average treatment 
effects of our intervention. We consider several 
outcomes (Y

it
) to capture various aspects of 

instructor behavioral changes: the number of 
uptakes per hour is our primary outcome as it is 
what the intervention is designed for, but we also 
consider the number of questions asked per hour, 
the number of repetitions per hour, and percent-
age of talk time to further examine the mecha-
nisms of change. To further verify that our 
randomization is successful, we also estimate a 
version of the model without any covariates.

We estimate the model first by pooling together 
all the weeks and then by each week to examine 
how instructors’ responses to the feedback evolve 
over time. We further conduct heterogeneity anal-
ysis by instructor gender, whether they are first-
time instructors in Code in Place, whether they 
are in the United States, and whether they demon-
strated high or low uptake in their first week of 
instruction. Finally, we estimate how instructors’ 
checking the feedback affects student assign-
ment completion, class attendance, whether they 
respond to the endline survey, and their satisfac-
tion of the course. To do this, we can no longer 
conduct the analysis at the weekly level as we 
only observe student outcomes at the end of the 
course. We thus use whether an instructor checked 
the feedback, prior to their subsequent section, at 
least once during the 5 weeks of teaching as the 
primary independent variable and conduct the 
analysis at the student level.

Results

First Stages

We present results from the first stages in 
Table 3. The first column shows estimates based 

on Equation 1 for the entire sample and the other 
columns show estimates for each week. We also 
report the percent of instructors in the control 
group who opened the feedback page prior to 
their subsequent section at least once up to week 
t so we can properly interpret the effect sizes of 
our intervention. Overall, our first stages are 
quite strong, with F statistics above 34 when 
using the entire sample and above 17 when using 
data from each week.

We find that our email reminder successfully 
improves treated instructors’ likelihood of open-
ing the feedback page. Across all instruction 
weeks, the email reminder increases treated 
instructors’ likelihood of checking the feedback 
at least once to 71.2%, four times the rate in the 
control group (17.6%). It appears that the inter-
vention has the strongest effect in Week 2 (i.e., 
after the first email reminder). While the coeffi-
cients get bigger over time, the incremental 
change is at a smaller margin. Specifically, the 
first email reminder increases treated instructors’ 
likelihood of interacting with the feedback four 
times more compared with the control group. 
Namely, nearly 61.4% of all treated instructors 
have interacted with the feedback at this point. In 
later weeks, the ratio of the treatment and control 
group’s likelihood of checking the feedback 
decreases to 3 (Week 3), 2.7 (Week 4), and 2.8 
(Week 5). This is understandable, as over time, 
fewer and fewer instructors in each group are left 
in the category that has not interacted with the 
feedback at all. We also find that instructors who 
are older and those who are outside of the United 
States are more likely to interact with the 
feedback.

Impact on Instructors’ Uptake of Student 
Contributions

In Table 4, for comparison purposes, we report 
results from both the intent-to-treat (ITT) and 
TOT analyses. We also run the analyses for all 
the four outcomes of teaching practices, includ-
ing uptake, questions, repetition, and talk time, to 
probe both the overall effects on uptake and the 
associated discourse features that might be 
changed due to the feedback we provided to 
instructors.

The ITT results, which are reported in Panel A 
of Table 4, suggest that our intervention improved 
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TABLE 3

First Stages

Instructor ever checked feedback

 (1) (2) (3) (4) (5)

Variable All weeks Week 2 Week 3 Week 4 Week 5

Email reminder 0.536** 0.490** 0.537** 0.555** 0.570**
 (0.027) (0.030) (0.031) (0.031) (0.032)
Female 0.035 0.042 0.034 0.015 0.046
 (0.029) (0.032) (0.033) (0.034) (0.034)
Age 0.030** 0.027* 0.031** 0.036** 0.024*
 (0.008) (0.011) (0.011) (0.010) (0.011)
Age2 −0.000** −0.000* −0.000** −0.000** −0.000*
 (0.000) (0.000) (0.000) (0.000) (0.000)
First-time instructor 0.050 0.025 0.037 0.079* 0.072†

 (0.032) (0.037) (0.038) (0.039) (0.040)
In United States −0.076* −0.094** −0.073* −0.064† −0.071*
 (0.030) (0.033) (0.034) (0.035) (0.035)
Number of uptakes per hour (Week 1) 0.003 0.006 0.006 0.000 −0.002
 (0.004) (0.005) (0.005) (0.005) (0.005)
Number of repetitions per hour (Week 1) −0.001 −0.001 −0.001 −0.000 0.000
 (0.002) (0.002) (0.002) (0.002) (0.002)
Number of questions per hour (Week 1) −0.000 −0.002 −0.002 0.001 0.001
 (0.002) (0.002) (0.002) (0.002) (0.002)
Teacher talk time proportion (Week 1) −0.169 −0.220 −0.284 −0.118 −0.031
 (0.152) (0.167) (0.180) (0.181) (0.180)
Week = 3 0.071**  
 (0.012)  
Week = 4 0.113**  
 (0.013)  
Week = 5 0.116**  
 (0.014)  
Constant −0.253 −0.116 −0.088 −0.298 −0.206
 (0.209) (0.248) (0.264) (0.259) (0.255)
Control means 0.176 0.124 0.179 0.203 0.204
F statistics 34.151 17.991 19.837 20.697 21.482
R2 .320 .282 .310 .337 .353
Observations 2,962 797 768 710 687

Note. Standard errors are in parentheses. These models estimate the effect of the email reminder (treatment) on whether the 
instructor checked their feedback from the previous week’s class session, prior to their subsequent session. Model (1) includes 
data across all intervention weeks, while Columns 2, 3, 4, and 5 show weekly effects of the email reminder on checking the 
feedback for Weeks 2 to 5, respectively. In addition to the covariates listed, all models include classroom demographics listed 
in the “Empirical Strategy” section.
†p < .10. *p < .05. **p < .01. 

instructors’ use of uptake. On average, treated 
instructors increased their use of uptake by 0.60 
times per hour of instruction (p < 0.05), which is 
about 7% of the magnitude of the control mean 
on uptake (8.58). We also find that treated 

instructors significantly increased their use of 
questioning by 1.70 times per hour (6% of con-
trol mean). This is likely because teachers are 
asking more follow-up questions as a strategy to 
take up student ideas. In contrast, we do not 
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observe any significant effects on instructors 
repeating student language or decreasing their 
own talk time. Overall, the ITT results provide 
suggestive evidence on how our intervention, a 
simple weekly email reminder that encourages 
instructors to check the feedback page, is able to 
improve their teaching practices.

The TOT analysis answers the question of how 
checking the feedback changes instructors’ teach-
ing behavior and is of more policy relevance. We 
report the results in Panel B of Table 4. Not sur-
prisingly, the effect sizes are much bigger com-
pared with those in the ITT analysis. Specifically, 
instructors who were induced to check the feed-
back page at least once by our randomized email 
reminders improved their use of uptake by 1.13 
times per hour (13.2%, p < .05). Similarly, we 
find that instructors who checked the feedback 
asked roughly 3.20 (11.4%) more questions per 
class (p < .05), but did not repeat student contri-
butions more frequently nor did they talk less. 
These results, along with the ITT ones, suggest 
that the improvement in uptake is driven primar-
ily by more sophisticated strategies such as 
increased questioning rather than repetition or 
talk time. We also replicate all these results with-
out any controls other than the binary weekly 

indicators in Supplementary Appendix Table A3 
in the online version of the journal. All the coef-
ficients are very close to those in Table 4 but 
have slightly larger standard errors, providing 
further evidence that our randomization was 
done successfully and the control variables only 
improve the precision of our inferences.

To understand how instructors’ responses to 
the feedback evolve over time, we also run the 
TOT analysis for each week. The results are 
reported in Table 5. We find that it takes some 
time for instructors to utilize the feedback and 
improve their instructional strategies. While our 
first stage analysis (Table 3) shows that more than 
four times as many treated instructors checked the 
feedback after our first email reminder compared 
with the control group, the feedback did not 
immediately lead to any changes in the four dis-
course features we examine. In fact, the most sig-
nificant instructional changes took place in Week 
3, with coefficient sizes close to double those of 
the second week for both uptake and questioning 
(p < .05). While there is a marginally significant 
coefficient for repetition, we also observe a drop 
of instructors’ talk time (4.9%, p < .01). In Weeks 
4 and 5, the coefficients for the uptake outcome 
decrease while remaining statistically significant 

TABLE 4

Effects of Automated Feedback on Teaching Practices

(1) (2) (3) (4)

Variable Uptake Question Repetition Talk time

Panel A: Intent-to-treat results
 Email reminder 0.603* 1.699* 1.044 −0.009
 (0.265) (0.724) (0.865) (0.007)
 R2 .275 .345 .279 .241
Panel B: Treatment-on-the-treated results
 Ever checked feedback 1.125* 3.169* 1.947 −0.016
 (0.491) (1.344) (1.606) (0.013)
 Control mean 8.580 27.849 31.927 0.805
 R2 .273 .343 .278 .240
 Observations 2,962 2,962 2,962 2,962

Note. Standard errors, clustered at the instructor level, in parentheses. Panel A shows the effects of the email reminder (treat-
ment) on teaching practices. Panel B shows the effects of checking the feedback from the previous class session and prior to 
their subsequent section on teaching practices estimated via two-stage least squares regression to control for the experimental 
condition. First-stage results are reported in Table 3. The dependent variables are the number of uptakes per hour (1), number of 
questions per hour (2), number of repetitions per hour (3), and proportion of teacher talk time (4). All models include the same 
covariates as Table 3, Model (1): teacher demographics, pre-intervention teaching practices, and student demographics, as well 
as controls for each week.
*p < .05. 
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at the conventional level, suggesting our interven-
tion still improves instructors’ use of uptake but 
not as strongly as Week 3. While we still see a 
significant and positive effect on questioning in 
Week 4, all the coefficients are no longer statisti-
cally significant for other outcome measures dur-
ing the last 2 weeks.

Heterogeneity Analysis

Instructors from different backgrounds or 
with different characteristics might respond to 
the feedback differently. We thus conduct hetero-
geneity analysis by gender, teaching experience 
with Code in Place, whether they are based in the 
United States, and whether they demonstrated 
high or low uptake in their first week of instruc-
tion. The results are shown in Table 6.

While female instructors increase the number 
of times they take up student ideas slightly more 
as a result of the feedback compared with males, 
the coefficients for both groups are marginally 
significant and the differences are small. We find 
more pronounced variability by teaching experi-
ence and location. Returning instructors in Code 
in Place and those who are not based in the 
United States increased their uptake of student 
contributions by roughly two instances per hour; 
three to four times as much as their counterparts 
whose coefficients are below 1 and are statisti-
cally insignificant. We see similar patterns for 
the use of questions. Instructors who are outside 
the United States also significantly increased 
their use of repetition and reduced their overall 
talk time, suggesting that these instructors 
adopted more than one strategy to improve their 

TABLE 5

Treatment-on-the-Treated Effects on Teaching Practices by Week.

(1) (2) (3) (4)

Variable Uptake Question Repetition Talk time

Week 2 (n = 797)
 Ever checked feedback 0.622 2.233 0.460 −0.004
 (0.741) (1.864) (1.993) (0.015)
 Control M 9.136 29.867 30.894 0.818
 R2 .290 .368 .346 .314
Week 3 (n = 768)
 Ever checked feedback 1.465* 4.239* 3.962† −0.049**
 (0.677) (1.849) (2.106) (0.018)
 Control M 9.010 30.105 33.130 0.801
 R2 .260 .319 .269 .226
Week 4 (n = 710)
 Ever checked feedback 1.233† 3.366* 1.607 0.014
 (0.677) (1.693) (2.185) (0.018)
 Control M 8.174 25.532 31.579 0.806
 R2 .308 .346 .278 .233
Week 5 (n= 687)
 Ever checked feedback 1.132† 2.868† 1.762 −0.023
 (0.676) (1.730) (2.233) (0.018)
 Control M 7.826 25.189 32.189 0.793
 R2 .240 .304 .241 .208

Note. Standard errors in parentheses. The effects of checking the feedback on teaching practices estimated week-by-week via 
two-stage least squares regression to control for the experimental condition—first stage results are reported in Table 3. The 
dependent variables are the number of uptakes per hour (1), number of questions per hour (2), number of repetitions per hour 
(3), and teacher talk time ratio (4). All models include the same covariates as Table 3: teacher demographics, pre-intervention 
teaching practices, and student demographics.
†p < .10. *p < .05. **p < .01.
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performance on uptake and were more amenable 
to changes. Due to our limited data on instruc-
tors’ background, we are not able to further pin-
point why non-U.S. instructors are so responsive 
to the automated feedback. One possible expla-
nation is that non-U.S. instructors have more 
motivation to learn from the course, as they vol-
unteered to teach a course organized by another 
country and to teach in a language that may not 
be their mother tongue.

Interestingly, we also see some suggestive 
evidence that instructors who exhibited more 
uptake in the first week of instruction benefit 
more from our feedback than their counterparts. 
One conjecture we have is that it might be easier 
for instructors who already use uptake to some 
extent (so they have some of the uptake skills) to 
improve their teaching practices with the help of 
feedback. Alternatively, it is possible that the 
information we provided to instructors who 
were initially low on uptake was somewhat dis-
couraging (e.g., one might receive feedback 
showing they demonstrated zero uptake in Week 
1) so the feedback did not achieve the expected 
positive benefits. It will be valuable to investi-
gate how to generate positive effects regardless 
of an instructor’s initial use of uptake in future 
studies.

Impact on Student Learning Outcomes and 
Satisfaction

So far, we have provided evidence on how the 
automated feedback can improve instructors’ 
uptake of student ideas. However, it is unclear 
whether this instructional improvement can trans-
late to student learning gains. As Code in Place 
did not administer an end-of-course test to the 
students, we use their assignment completion and 
survey data to provide suggestive evidence on 
student learning and satisfaction. We fit the same 
2SLS models as discussed before, using student-
level data. We report the results in Table 7.

TOT estimates suggest that instructors’ check-
ing the feedback at least once increased students’ 
completion of the second assignment by 6.6% 
compared with the control mean (p < .10). There 
is no significant change for the third assignment. 
This is partially explained by the fact that the last 
assignment was distributed toward the end of the 
course, and students overall had low motivation 
to finish it. In fact, students taught by the control 
group instructors on average finished 52.9% of 
the second assignment, but this number is only 
33.3% for the third assignment. We also do not 
find evidence that the feedback increased the stu-
dent proportion of classes attended.

TABLE 6

Heterogeneous Treatment-on-the-Treated Effects on Teaching Practices

Dependent 
Variable

(1) (2) (3) (4) (5) (6) (7) (8)

Female Male
First-time 
instructor

Returning 
instructor

In the United 
States

Not in the 
United States

High–Week 
1 uptake

Low–Week 
1 uptake

Uptake 1.450† 0.958 0.799 2.369* 0.577 2.010** 1.343† 0.930
 (0.856) (0.597) (0.556) (1.108) (0.648) (0.706) (0.715) (0.665)
Questions 3.586 2.958† 2.213 6.224* 1.489 5.971** 3.506† 2.938
 (2.454) (1.608) (1.525) (2.958) (1.697) (2.057) (1.931) (1.843)
Repetition 5.347* 0.534 1.019 5.527 −0.496 5.836* 3.131 0.259
 (2.592) (1.989) (1.833) (3.465) (2.018) (2.573) (2.161) (2.324)
Talk time −0.034 −0.007 −0.013 −0.027 0.007 −0.052** −0.015 −0.019
 (0.023) (0.016) (0.016) (0.025) (0.017) (0.020) (0.018) (0.019)
n 952 2,010 2,350 612 1,919 1,043 1,467 1,495

Note. Standard errors in parentheses. Heterogeneous treatment effects of checking the feedback on teaching practices estimated 
via two-stage least squares regression to control for the experimental condition—first stage results are reported in Table 3. The 
dependent variables are the number of uptakes per hour (1), number of questions per hour (2), number of repetitions per hour 
(3), and teacher talk time ratio (4). All models include the same covariates as Model (1) in Table 3: teacher demographics, pre-
intervention teaching practices, and student demographics.
†p < .10. *p < .05. **p < .01.
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There is suggestive evidence that the feed-
back improved students’ course satisfaction. In 
Column 4, we find that instructors’ checking the 
feedback significantly improved their students’ 
likelihood to respond to the survey by 20% com-
pared with the control mean (p < .05). While we 
do not see statistically significant results for 
course ratings for students who responded to the 
survey (Column 5), this is likely driven by the 
fact that students who responded to the survey 
were also the ones who were most satisfied with 
it. As Supplementary Appendix Figure A5 in the 
online version of the journal shows, 96% of stu-
dent respondents rated the course at 8 or above 
out of a scale of 10, and 99% rated the course 7 
or above.8 Overall, while our data on student 
learning outcomes and satisfaction are not as rich 
as we would hope and the survey results suffer 
from the overall low response rate, they provide 
some evidence on how teaching practices induced 
by the feedback have the potential to improve 
student outcomes.

Instructor Feedback

Because the instructor feedback is self-
reported and we only administered our survey to 
a random sample of 200 instructors due to lim-
ited resources, it constitutes a weaker outcome 
than the analyses above. That being said, the sur-
vey responses do indicate that the feedback had 
many positive benefits for instructors. Simple 

descriptions of the survey responses suggest that 
the majority of instructors who checked the feed-
back found the feedback helpful and reported 
that it generated insights into their teaching and 
helped them become a better teacher (for details, 
see Supplementary Appendix J in the online ver-
sion of the journal). These findings provide sug-
gestive evidence that the automated feedback 
enhanced teachers’ self-efficacy, which might 
have contributed to the positive student outcomes 
we observe. Follow-up studies may help better 
understand the relationship among the email 
reminders, instructors’ perception of the feed-
back, and student outcomes.

Discussion

Our study investigated whether it is possible 
to effectively deliver feedback to teachers at 
scale using automated tools. We developed 
M-Powering Teachers, a fully automated tool to 
provide feedback to teachers on their uptake of 
student contributions, one of the most important 
discourse phenomena associated with dialogic 
instruction, and tested the effectiveness of this 
tool in a large-scale online programming course. 
In doing so, we demonstrated that feedback on 
instruction, typically a labor-intensive process 
and one that is unavailable to many teachers, can 
be delivered widely and can stimulate improve-
ments in instructional practice. Importantly, scale 
does not come at the cost of efficacy: Our effect 

TABLE 7

Treatment-on-the-Treated Effects on Student Outcomes

(1) (2) (3) (4) (5)

Variable Assignment 2 Assignment 3
Proportion of 

classes attended
Responded 
to survey Course rating

Ever checked feedback 0.035† 0.009 0.021 0.031* 0.111
 (0.021) (0.019) (0.024) (0.015) (0.155)
Control M 0.529 0.333 0.380 0.156 9.386
R2 .019 .012 .029 .020 .018
Observations 9,658 9,658 9,704 9,704 1,623

Note. Standard errors in parentheses. As Assignment 2 was released after Week 2’s instruction and due on the first day of Week 
4, we only use whether an instructor checked the feedback at least once prior to Week 4 as the independent variable in the first 
stage of our regression. For the other outcomes, we aggregate data from Weeks 2 to 4 to construct the independent variable on 
checking feedback. All models include the same covariates as the instructor-level analyses (e.g., Table 3): teacher demographics, 
pre-intervention teaching practices, and student demographics. As the data are aggregated across weeks, we also include controls 
capturing whether an instructor had a transcript for each week.
†p < .10. *p < .05.
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sizes are similar to or greater than those obtained 
in other professional learning interventions (e.g., 
Gonzalez et al., 2022; Kraft et al., 2018).

We found that the automated teaching insights 
in our tool increased instructors’ uptake of stu-
dent contributions by 13%, a result likely driven 
by instructors’ increased use of more sophisti-
cated strategies beyond repetition, such as fol-
low-up questioning. There is also suggestive 
evidence that students whose teachers looked at 
the feedback completed a greater percentage of 
their second assignment and were more satisfied 
with the course. Finally, the majority of instruc-
tors found the feedback helpful. These results 
together suggest that M-Powering Teachers has a 
positive impact on instruction.

The success of this intervention suggests four 
avenues for future work. One is extending 
M-Powering Teachers to capture other teaching 
strategies—for instance, using models to parse 
and provide feedback on teachers’ questioning 
strategies (Alic et al., 2022), use of academic lan-
guage, or equity-focused talk moves (Wilson 
et al., 2019). Once we have a set of robust class-
room indicators, we can design more robust feed-
back systems based on teachers’ strengths and 
areas for improvement. A second avenue is 
extending feedback to new platforms and set-
tings within the online learning sector. At least 
two states incentivize online course completion 
prior to high school graduation (Georgia9 and 
Florida10), and the number of open online courses 
and degree programs continue to grow. 
Automated feedback in these settings is simple to 
implement and relatively easy to study.

A third avenue would take advantage of these 
research opportunities to gain insight into how 
feedback can best be crafted to elicit teachers’ 
attention and behavioral change. Qualitative 
studies of teacher perceptions of and actions in 
response to automated feedback can help priori-
tize and shape later experimental A/B tests of 
feedback that varies in tone (e.g., largely positive 
vs. positive + constructive), in referents (e.g., 
prior personal performance as the reference vs. a 
comparison with other teachers), and calls to 
action (e.g., asking teachers to formulate their 
own plans for change vs. asking teachers to take 
up expert-recommended strategies). Such studies 
could also test other constructs thought to be crit-
ical ingredients in adult learning, for instance, 

teacher agency, the personalization of feedback, 
or social accountability for change.

A fourth avenue involves extending 
M-Powering Teachers to the K–12 public school 
sector. Several factors suggest this technology 
may gain a foothold in public schools. First, the 
feedback is very low cost, at US$1 per session 
once fixed costs of system setup are paid. Second, 
automated feedback can occur in settings where 
coaches are not present and where principals do 
not have the time or inclination to provide high-
quality evaluative feedback. Third, the privacy 
associated with such feedback may also engage 
teachers who are hesitant to work with coaches 
or who already perceive their instruction to be 
satisfactory.

However, we think it unlikely that the effects 
we observed in this experiment would translate 
directly to K–12 schools without significant 
additional supports. Code in Place employed 
mostly novice, all-volunteer instructors; these 
instructors likely had few other resources for 
improving their instruction and lots of room to 
improve. K–12 teachers, by contrast, often have 
well-established classroom interaction patterns, 
many opportunities to improve their craft, and 
some already use highly interactive instructional 
methods. Furthermore, whereas instruction is 
seamlessly recorded in online settings, classroom 
recordings require the setup of recording devices 
and the upload of files to the cloud, extra tasks 
that teachers may not want to engage in during 
the course of their busy workday. Furthermore, 
teacher and student talk may not be audible if 
recorded on typical handheld devices (e.g., 
phones or tablets), and ASR software may thus 
fail to generate transcripts usable in NLP analy-
ses. Solving these problems encompasses 
advances in ASR technology as well as advances 
in making automated feedback both appealing to 
and easily used by teachers.

Before this technology can work at scale, sev-
eral other issues must be resolved. At a high 
level, we need to create oversight mechanisms 
for the ethical development, evaluation, and use 
of automated teacher feedback technologies 
(Madaio et al., 2020, 2022). Teachers and other 
educators should play an integral role in ethical 
tool design and evaluation, but we know of no 
active efforts to set standards and guidelines for 
the use of this technology in schools. This need is 
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particularly acute in the area of teacher and stu-
dent privacy, where, in the extreme, the possibil-
ity exists for the constant monitoring of 
classrooms as well as the use of classroom data 
for marketing purposes. There are also concrete 
technical issues that we need to address: ASR is 
less accurate for noisy classroom audio and for 
speakers whose native language is not Standard 
American English, and differences in accuracy 
across these linguistic groups may continue to 
propagate inequities in teachers’ professional 
development and students’ opportunities to learn. 
Thus, we need to improve and carefully evaluate 
ASR tools, as well as all other NLP methods that 
build upon it, to make our tool robust and fair 
(Kizilcec & Lee, 2022).

Despite its limitations, this study constitutes 
an important step toward our ultimate goal of 
developing an effective, scalable feedback tool 
for all teachers. With the development of new 
NLP-based measures of instruction, we can 
extend our tool to generate insights on multiple 
aspects of teaching (Liu & Cohen, 2021). Future 
efforts should continue to improve, validate, and 
apply M-Powering Teachers to explore its full 
potential to support teaching and improve student 
learning outcomes across educational contexts.
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Notes

1. https://www.chalkbeat.org/2022/6/29/23186973/
virtual-tutoring-schools-covid-relief-money

2. Unlike instructor applicants, who were asked to 
report their specific age, student applicants were asked 
to select their age ranges.

3. In all, 3% in Canada; 2% each in Bangladesh, 
Germany, and the United Kingdom, 1% each in 
Nigeria, Turkey, Singapore, Australia, Pakistan, 
Brazil, Philippines, Japan, Nepal, Russia, Serbia, 
Kenya, Indonesia; and 16% total in other countries.

4. We do not have evidence for spillover effects. 
As instructors were located across the world, their 
primary way to communicate was through the course 
forum. We moderated the forum by making all instruc-
tor posts about the automated feedback private, visible 
only to the course organizers. We also asked course 
organizers to not advertise the automated feedback to 
instructors. We took these steps to prevent advertise-
ment about the automated feedback to control group 
instructors.

5. We removed recordings shorter than 30 minutes 
to ensure that our sample only includes transcripts 
where meaningful instruction took place. Recordings 
shorter than 30 minutes usually indicate technical 
issues. As a result, our analytic sample consists of a 
total of 4,056 section recordings with an average dura-
tion of 64 minutes.

6. The results are very similar if we use students’ 
ratings of how helpful the sections are so we omit them 
in our main analysis.

7. The Code in Place team did not document the 
cause of missing recordings but they suspect that the 
majority of them are caused by an instructor switching 
to Zoom or another platform. If an instructor did not 
show up to teach, the organizers did their best to find a 
substitute instructor. In cases when they were not able 
to find substitutes, they would share a recorded section 
by another instructor with the students from the same 
week. However, we do not have the recordings for the 
substituted sections, nor do we know if the section had 
substitutes.

8. We do not have a reason to believe that these dif-
ferences are due to instructors in the treatment group 
directly telling students to respond to the survey, as 
instructors were not aware of the intervention and 
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most of them were also not aware of student end-line 
surveys. Thus, we can reasonably assume that these 
differences are due to an indirect effect of teaching 
practice on student satisfaction.

9. https://www.legis.ga.gov/api/legislation/document 
/20112012/127888

10. https://www.fldoe.org/core/fileparse.php/5606/
urlt/Virtual-Sept.pdf
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